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Abstract

Monitoring and repair (diagnosis, for short) are often thought of as isolated tasks
in theoretical reasoning (reasoning with the goal of updating our beliefs about the
world). We present a decision-theoretic interpretation of diagnosis as a task in practi-
cal reasoning (reasoning with the goal of acting in the world), and sketch components
of our approach to this task. These components include an abstract problem descrip-
tion, a decision-theoretic model of the basic task, a set of inference methods suitable
for evaluating the decision representation in real-time, and a control architecture to
provide the needed continuing coordination between the agent and its environment.
A principal contribution of this work is the representation and inference methlods
we have developed, which extend previously available probabilistic inference methods
and narrow, somewhat, the gap between probabilistic and logical models of diagnosis.



Chapter .1

Introduction

In this paper we will present a status report on research into diagnosis as an emhedded
value-driven activity. Several characteristics become apparent from this persp-ctive
that are not normally emphasized in work on diagnosis. First, we view tile task as
on-going rather than one-shot. Second, we recognize that diagnosis must often be
performed under time limitations. Finally, we consider a decision-theoretic model of
diagnostic activity in which diagnostic reasoning is not a theoretical activity but a
practical one. That is, its goal is not to increase our knowledge, but rather to choose
an action which maximizes expected utility.

Four key elements characterize our current approach to these problems. First,
we have developed a simple abstract domain which captures these essential elements,
which we title the On-Line Maintenance Agent (OLMA) task domain. Second, we
have developed a decision-theoretic model of the basic decision task facing an agent
in this domain. Third, we have developed probabilistic inference methods suited for
solving the resulting decision problem. Fourth, we have developed a problem-solving
architecture intended to provide the reactivity needed in embedded, ongoing tasks.
We view the third contribution, the development of suitable probabilistic inference
mechanisms, as our most significant contribution to date. These methods have been
described elsewhere. The goal of this paper is to place them in the context of the
larger task of real-time value-driven diagnosis. We begin with a review of the basic
task domain, then discuss each of the remaining three elements of our approach. We
dose with a discussion of related work, limitations, and future directions.

1.1 On-Line Equipment Maintenance

Early writings by at least some in AI (e.g., [40]) stress the necessity of recognizing
both the limitations and embedded nature of realizable agents. Despite that, much
work in AI has proceeded as if the demands placed by the environment are static. In
a diagnostic task, for example, the system being diagnosed is often presumed to have
broken before diagnosis starts, and to not undergo any further changes (other than
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those initiated by the diagnostic agent) while diagnosis takes place (an exception
is some medical monitoring and diagnosis systems). Further, the environment is
presumed to be static enough to allow all solution-quality/time-to-solution tradeoffs
to be made at design time (the standard "20 minute solution tihne' criterion for
judging potential expert system applications is a prime example of this). These
assumptions, together with assumptions that problem solving proceeds by inference
with explicit, categorical representations, characterize much work in Al, whether it
is on planning, diagnosis, natural language understanding, or image understanding
(although less so in these latter areas).

Diagnosis, in accord with the above, is often formulated as a static, detached
process, the goal of which is the assessment of the exact (or most probable) state of
some external system. In contrast, we view diagnosis as a dynamic, practical activity
by an agent engaged with a changing and uncertain world. We have focused our
initial investigations of diagnosis on the task of diagnosing a simple digital system in
situ. Our formulation of embedded diagnosis has the following characteristics:

"* The equipment ' under diagnosis continues to operate while being diagnosed.

"* Multiple faults can occur (and can continue to occur after an initial fault is
detected).

"* Faults can be intermittent.

"* There is a known fixed cost per unit time the system is malfunctioninag.

"* The agent senses equipment operation through a set of fixed sensors and one or
more movable probes.

"* Action alternatives include probing test points and replacing individual compo-
nents. Each action has a corresponding cost.

"* The agent can only perform one action at a time.

"* The overall task is to minimize total cost over some extended time period during
which several failures can be expected to occur.

We term this task the On-Line Maintenance task, and an agent intended for
performing such a task an On-Line Maintenance Agent. An interesting aspect of this
reformulation of the problem is that diagnosis is not a direct goal. A precise diagnosis
is neither always obtainable nor necessary. Indeed, it is not even obvious a priori what
elements of a diagnosis are even relevant to the decision at hand.

'We will use "system" to refer to our diagnostic system, and "equipment" to refer to the target
physical system.
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Chapter 2

A decision-theoretic formulation
of an OLMA

Our first commitment is that the task is essentially a decision-theoretic one. That is,
the essential task of the agent is to act in the face of limited information. In order
to formulate this problem decision-theoretically, the agent must have knowledge of
several parameters of the situation: It must know the cost of each type of replacement
or probe act, the cost of system outage, and expected probabilities of component
failures over the next decision cycle'. A naive attempt to formulate this task decision-
theoretically, however, encounters three problems. First, a proper decision-theoretic
consideration of this task would require looking ahead over all decisions over the
entire operational life of the equipment in order to optimize the first decision. This is
clearly computationally intractable. Second, even if the first problem can be solved,
time is passing while the agent is computing the first action, and it is not clear how
the agent should trade quality of a decision for timeliness of the solution in choosing
actions. Finally, the agent must act repeatedly, yet each action is in a new context:
not only must a new set of input data be considered, but also a new set of beliefs
about system state, based on prior computation.

The infinite lookahead, or "small worlds" [37] problem has two subproblems, one
for replacement actions and another for probe actions. We circumvent the first sub-
problem, that of infinite lookahead for replacement actions, as follows. For replace-
ment actions it is possible, under assumptions about stability of the fault transition
probabilities and fault costs, to derive off-line an optimal replacement policy condi-
tioned on current beliefs about component states (this would take the form: "replace
component x whenever its posterior probability of being faulted is greater than p.,"
where p. depends on parameters of the target system). We use an alternate, equiv-
alent form of this result that requires less a-priori analysis, an assumption of policy

'Theme latter two costs will vary with agent processing capacity, since a slower agent will take
longer to make a decision. This will increase the chance of a component failing during a single
decision cycle, and increase the cost of a system outage over a decision cycle.
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stability. This assumption is roughly as follows: If I choose not to replace a compo-
nent now, then, all other things being equal (ie, no new unexpected sense data), I will
make the same choice next time. Under this assumption, the temporal consequences
of a decision extend, not for a single sense/act cycle, but several decision cycles into
the future. We model the temporal extent of the outcome state for a decision as fixed
time-period chosen to satisfy the following constraints:

t»>>/f

t << r/pf

where:

t is the outcome state duration (effectively, the multiplier for failure costs),

r is the cost of component replacement,

f is the cost of component failure for a unit clock time, and

p is the probability of component failure during a unit time interval.

The first constraint arises from the observation that, if tile cost of repla•cen•,ill is
greater than the cost of failure over the outcome period, then our limited look-a•eadl
agent will never replace a component. The second constraint arises from a inure
subtle problem: even if we are certain the equipment is functioning correctly now.
there is a non-zero probability it will be in failure mode in the outcome state. If the
expected cost of that failure (p*f*t) is greater than component replacement cost (r),
then the agent will always choose to replace, even though it believes the equipment
is functioning perfectly.

We resolve the second subproblem, that of determining the expected value of
probe actions, by using the standard decision-theoretic heuristic of one-step look-
ahead. The result of these two techniques gives us an abstract decision-basis for the
first decision as shown in figure 2.1, where the link from the state at time zero to the
value node reflect the costs of operating in that state for one decision time, and the
link from the state at time one to the value node reflect the cost of operating in that
state for d time units.

A few notes about this representation are in order. SO, SI, and S2 represent the
state of the equipment at times 0, 1, and 2 respectively. The actual state values are
unknown to the agent. 00 and 01 represent the observational data available to the
agent at the time decisions DO and Di are to be made. The solid arcs from SO and
S1 to 00 and 01 respectively reflect the fact that 00 and 01 are directly influenced
by the (unobservable) system state. The dashed arcs from 00 to DO and 01 to D I
represent the fact that the actual values of these variables will be available at the
time the respective decisions will be made. Finally, V represents the value of possible
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Figure 2.1: Abstract Decision Basis for first decision

outcomes, and the arcs to it reflect that the value is a function of the actual statl. of
the equipment at times 0 and 1 as well as the direct costs of the actions the ageilt
chooses.

We refer to this as an "abstract" decision basis because we typically will not
represent the state of the system or the observational data as single state variables.
Rather, we will typically have a structured representation, in the form of a belief
net. SO, for example, represents the set of unobservable system state parameters
and relationships among them, 00 represents the set of observed parameters, and
the arc between SO and 00 represents the relationship between the unobservable and
observable system parameters. This general model can be instantiated with casual or
evidential relationships (or both) between unobservable and observable parameters.
Consider, for example, a simple sequential two inverter circuit. For that case, we
might use causal knowledge to build a specific instantiation of our abstract SO and
00 as shown in figure 2.2. In this figure, "InvI, P, and Inv2" might all be components
of "SO", and "I and 0" might be directly observable.

Figure 2.2: Decision Basis fragment for two inverter system

Our second problem was that of trading off quality of solution with time to solu-
tion. There are two issues here. First, if the equipment is faulted, the longer we delay
taking a repair action, the higher the cost incurred. Second, since equipment opera-
tion is in parallel with agent operation, a fault may occur while the agent "wastes"
time reasoning about a prior, correct set of sense data. We provide no solution to
either of these problems here. However, we do present later an incremental (anytime)
decision procedure, and sketch experiments we are performing to statistically infer
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effective reasoning policies.
We resolve our final problem, that of making subsequent decisions, by simply

extending the above decision basis forward in time by one decision each cycle. A
sample decision basis for the second decision made by the maintenance agent is shown
in figure 2.3. This method would seem to have a problem: one would expect that
decision time (and space) would increase at least linearly with time. In fact, both time
and space requirements are constant. We defer the discussion of how we accomplish
this to the next section, on incremental probabilistic inference.

Figure 2.3: Abstract Decision Basis for second decision

In summary, then, our base-level agent executes the following cycle each time it
is called upon to choose an action:

1. Extend the decision basis forward in time by one decision cycle.

2. Acquire current sense data (including probe values).

3. Find the action with minimum expected cost.

4. Post the selected act as evidence in the belief net, prune unneeded old cycles
from the net, and return selected action.
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Chapter 3

Incremental Probabilistic
Inference

The problem of computing the expected utility for action alternatives can be cast
as a belief-net inference problem, as shown by Cooper [7]. However, most current
belief net inference facilities provide poor support for the cycle described above. The
limitations in existing algorithms are both representational and inferential. The key
representational limitation is an inability to represent structure within a single con-
ditional probability distribution. The key inferential problems can be described as
lack of incrementality with respect to various task requirements.

3.1 Representation

A belief net [32] is a compact, localized representation of a probabilistic model. Tile
key to its locality is that, given a graphical structure representing the dependen-
des (and, implicitly, conditional independencies) among a set of variables, the joint
probability distribution over that set can be completely described by specifying the
appropriate set of marginal and conditional distributions over the variables involved.
When the graph is sparse, this will involve a much smaller set of numbers than the
full joint. Equally important, the graphical structure can be used to guide processing
to find efficient ways to evaluate queries against the model. For more details, see [32],
[9], [38], [29]. All is not as rosy at it might seem, though. The graphical level is not
capable of representing all interesting structural information which might simplify
representation or inference. The only mechanism available for describing antecedent
interactions in typical general purpose belief net inference algorithms is the full condi-
tional distribution across all antecedents. However, a number of restricted interaction
models have been identified which have lower space and time complexity than the full
conditional. The noisy-or [32], [33], [20], [21], [1] for example, can be used to model
independent causes of an event, and inference complexity is linear in both space and
time in the number of antecedents for many inferences. Similarly, various asymmetric

7



[39], [17] and logical relationships are inefficiently represented using a full conditional.
Finally, value models used in utility modelling are often factored, for example they
may be additive. We have developed an algebraic extension to belief nets which
permits conditional distributions to be defined as algebraic compositions of smaller
distributions [11. We have shown that this representation is capable of capturing all
known intra-distribution structures, and that simple inference algorithms can make
use of this structure to perform inference effectively. Consider, for example, the prob-
lem of modelling the conditional distribution of the output of our two inverter circuit
given the state of the second inverter and the output of the first inverter. This would
normally be modeled as a single monolithic conditional distribution containing (if the
iaerter has four states: Ok, Stuck-at 0, Stuck-at 1, and Unknown) 16 numbers. The
fact that three of the four inverter states are deterministic is lost. However, we model
this as follows using our local expression language:

exp(O) = P(OilInv2 = Ok,Ilouto)

+P(OojInv2 = Ok, I lout,)

+P(OoIjnv2 = SO) + P(0 1 Ilnv2 == SI)

+P(OlInv2 = Uk)

A total of only six numbers are needed for the above (4 of them are 1.0). But
more significantly, we have captured explicitly important structural information such
as the fact that the output is independent of the input when the inverter is Stuck-at
1, Stuck-at 0, or Unknown, and that inverter behavior is deterministic in the Ok,
Stuck-at 0, and Stuck-at 1 states.

We believe this representation goes a long way towards dosing the expressiveness
gap between probabilistic and propositional representations for device models.

3.2 Inference

Now that we have an adequate abstract model for the basic on-line maintenance
decision and a representation adequate for expressing device and utility models, we
need inference methods suited for the task at hand. Despite the fact that current
state-of-the-art algorithms exploit the independence information in a belief [et to
construct efficient computations for probabilistic inference [32], [27], [38], in practice
computational cost still grows rapidly [281, limiting application of these techniques
to belief nets with a few hundred variables. Also, the services offered by current
probabilistic reasoning systems are not well matched to the needs of higher-level
problem solvers. As we discussed in [8] and [10], problem solvers typically interleave
model construction, revision, and evaluation. As a specific example of this, consider
the requirements posed by our formulation of the OLMA task:

e We must extend a model forward in time without discarding all previous infer-
ence and starting over. Current methods lack the incrementality with respect
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to model reformulation operations needed to support this.

"* Our decision evaluation methods require that we query arbitrary subsets of the
network variables. Current methods lack the incrementality with respect to
queries needed to support this.

"* The embedded nature of the task requires that we have flexible methods for
performing partial inference. Current methods lack the incrementality with
respect to completeness needed to support this.

In summary, no existing general-purpose low-level (propositional) probabilistic
representation service provides incrementality with respect to model revision and
resouize usage in a theoretically sound manner. We, of course, have an answer. IlII
this subsection we begin by reviewing the inference problem in a more general setting.

and offering a redefinition of the basic inference task. We sketch how al ilir,'ic
engine which performs this task can serve as the core of an incremental prohaliilistic
representation service, and report on the status of our current implementatiuai.

3.3 Term Computation

Probabilistic inference in belief nets, as currently defined, is generally taken to be
the computation of the prior or posterior marginal, conjunctive, or conditional prob-
ability distribution over some subset of variables in a fixed network. This is often an
unnecessarily restrictive formulation of the problem. The actual computation of any
prior or posterior probability can in general be viewed as a sum over a number of
terms (in the extreme case, this occurs as marginalization of the full joint). While the
number of terms to be computed is exponential in the size of the network, the time
complexity of computation of a single term is linear. Consider the network shown in
figure 3.1.

SP(A) PfB) t f P(C) t f

t f At .9 .1 Bt .75.25
.95 .05 Af .15.85 Bf .2 .8

Figure 3.1: Simple Belief Net

In this network:

P(C,) = EAB P(C IB, A) * P(B) * P(A)
= .95 * .9 * .75 + .95 * .1 * .2+ .05 * .85 * .2 + .05 * .15 * .75
= .64125 + .019 + .0085 + .005625
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We take the computation of a single term as an appropriate primitive task for
probabilistic inference, and next show how an inference system with the needed in-
crementality properties can be built around it.

3.3.1 Desiderata for a TCS

We believe a low-level representation service should have two key properties: it should
be Incremental and Efficient.

Definition 1 A system is Incremental with respect to some capability to the extent
that it can make use of the results of previous computations to reduce the cost or
improve the quality of results for subsequent computations.

For example, a system would be incremental with respect to queries if it took
advantage of results computed during processing of earlier queries in the processing
of some subsequent query. We identify four aspects of incrementality possible in
probabilistic inference:

1. Resource incrementality: Computation of an exact posterior probability is all
NP-hard task. Therefore, any practically usable system must offer facilities for
computing approximate responses to queries. incremeiitality with respect to
resources enables a system to use increments of time to refine estimates. This
give the problem solver control over the time/quality tradeoff in inference.

2. Query incrementality: Many probabilistic inference systems automatically com-
pute the answer to a fixed set of queries (eg, the set of marginal probabilities
for all the nodes in the net), and most have no capability to process any other
queries. Incrementality with respect to queries enables a system to accept mul-
tiple queries, and to use partial results computed during processing of earlier
queries to simplify processing of subsequent queries.

3. Evidence incrementality: Evidence typically arrives over time: A robot turns
to scan a new part of the scene, a medical lab reports a new test result, and
so on. Incrementality with respect to evidence enables a system to update its
internal representations when new evidence arrives, rather than recompute all
queries from the initial belief net. Most modern belief net algorithms possess
evidence incrementality.

4. Representation incrementality: A belief net is an improverished form of repre-
sentation: it is a minor extension of a propositional logic. And yet, inference
within this representation is NP-hard. We believe, therefore, that resource in-
crementality within a fixed representation is not enough, but rather that in
addition inference within a partial problem representation must be able to be
interleaved with representation extension operations, so that a problem solver
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can heuristically search towards an appropriate problem representation. Incre-
mentality with respect to representation extension enables a system to reuse
results from prior computations even when the representation on which those
computations is based is modified between queries.

The last form of incrementality stated above may seem a bit extreme. Yet, in one
recent problem solver, Wimp [5], that relied on the kind of problem solving process
sketched above, the processing bottleneck was in its probabilistic representation ser-
vice, precisely because the service was not incremental with respect to represelita.1i.l
extensions.

Efficiency The goal of incrementality is efficiency. Not all efficiency concerns, how-
ever, are captured under the rubric of incrementality.

Definition 2 A representation service is Efficient to the extent that it maximizes the
information gain with respect to a query per resource increment.

Again, we can identify several desirable forms of efficiency:

1. Efficiency with respect to network structure: There are three kinds of structure
which can be exploited: the network topology, intra-distribution qualitative
structure, and quantitative structure.

(a) Network Topology: All modern belief net algorithms exploit the condi-
tional independence information contained in the topology of a belief net
to reduce computational complexity.

(b) Intra-distribution qualitative structure: There is often considerable str,,c-
ture within the conditional distributions in a belief net [11], [19], 139], 117].
This structure can and should be exploited to improve efficiency. For a
discussion of how this structural information is captured and exploited in
SPI see [11].

(c) Numeric structure: Finally, there is often considerable numeric structure
within a belief net, in the form of skewness of distributions (a distribution
is skewed when one of the probability masses in the distribution is larger
than the others, we will formalize this later). Several systems have explored
exploitation of this structure [31], [24], [22].

2. Efficiency with respect to resource incrementality: We expect an incremental
system to be only minimally more expensive than a non-incremental system on
comparable tasks.

11



3.3.2 Outline of Term Computation

A term computation approach will be interesting only if we can get a significant
amount of information through the computation of a small number of terms. While
there are many ways this might arise1 , we motivate the approach through the intro-
duction of a critical assumption: we assume that most distributions in a belief net
are "asymmetric:"

Definition 3 A marginal probability distribution is Asymmetric if one mass ele-
ment is larger than the remaining element(s). A conditional distribution is Asymmet-
ric if each row satisfies this constraint. In this case it need not be the same element
in each row.

If all the distributions in a belief net are asymmetric, then most of the probability
mass for many queries is contained in the first few terms2 :

Theorem 1 Given a Belief-net over n two-valued variables such that all distribution.s
are asymmetric with a larger mass at least (n - 1)/n, then the n + I laiyt.-/ term... 14
the joint distribution across the variables contain a total mass of at least 2/].

Note that this result is not based on any assumptions about the structure of
the network. The degree of asymmetry assumed in the above theorem may seem
extreme. However, it is quite natural in many applications, such as failure modeling
of complex systems. Thus, our answer to the question of which terms to compute will
be to compute the largest terms first. One could construct a term computation system
which merely enumerated elements of the full joint distribution across all variables
in a network, as in our example. Indeed, existing proposals for anytime probabilistic
inference essentially do this [22], [24]. However, such an approach can be grossly
inefficient. There are several sources for this inefficiency: First, there would be a time
inefficiency due to unnecessary repetition of sub-computations (eg, the computation of
P(BtIAt) * P(At) in our example). Second, there would be space inefficiency resulting
from keeping each term separate. Finally, it is not obvious how such simple methods
can be made incremental with respect to newly arriving evidence, queries, or belief
net extensions.

Developments in exploiting the probabilistic independence relations expressed in
belief nets provide the necessary basis for designing computations which address these
problems. In general, the sparser a belief net, the more finely any computation cati he
partitioned into independent sub-computations which share only a small number of
variables. For example, given the net in figure 3.2, a query for P(D) can be computed
by first computing the full joint probability distribution, then marginalizing over all

'For example, through domain dependent knowledge of paradigmatic "cases".2Proof in extended report.
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Figure 3.2: Paradigmatic Belief Net

variables except D:

P(D) = • P(DIB, C,F) *P(FIE) *P(E)
A,B,C,E,F

*P(BIA) * P(CIA) * P(A)

However, a much more efficient form of the computation is:

P(D) = (_,(Y P(FIE)* P(E))* EP(DjB, C)
F E B.C

E , P(BIA) * P(C(A) * P(A))
A

Having done this, we can eliminate redundant computation simply by caching
intermediate results. Similarly, we can reduce the space requirement by combining
terms when their bindings differ only on variables not needed in the remainder of the
computation. In the extreme, each of these can reduce the corresponding complexity
(time and space) for computing each term beyond the first from n to Log(n), where
n is the number of variables relevant to a query.

In the following section we first develop the basics of term computation (which
is inherently incremental with respect to resource consumption) for a static network,
set of evidence, and set of queries. We then sketch how the fundamental computation
can be made incremental with respect to queries, evidence, and net extension.

The elementary primitive out of which we build a term computation system is
the construction of a stream of terms for some node in the evaluation poly-tree for a
set of queries. This stream will be constructed, recursively, by combining streams of
terms from child nodes in the poly-tree. We first describe this evaluation poly-tree
and its construction, then explain the term computation process.
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Evaluation poly-tree construction Consider the net in figure 3.2, and assume
our queries are for G and D. The expression for P(D) has been given earlier. The
expression for P(G) is:

P(G) - _P(GIF) * (1_, P(FIE) * P(E))

F E

It should be obvious that we can efficiently combine these two expressions into a
single evaluation poly-tree:

P(G!F)

P(E) P(F!E) P(D!B,C,F)

A P(C!A)

P(A) P(B!A)

Figure 3.3: Evaluation Poly-tree for sample query set

Construction of an optimal evaluation poly-tree for an arbitrary query set is a
hard problem [29]. However, simple, polynomial-time heuristics perform quite well,
and are described in [14], [29]. This previous work was performed in the context of
exact query evaluation (that is, computation of all terms), but the theory remains
applicable, and so will not be repeated in detail here. The process used in [29] is
the basis for our current implementation. That method is essentially a greedy search
through the space of partial evaluation trees3 .

Term computation Given an evaluation poly-tree for a query set, the primitive
operation at each node in the tree is generation of a term. Term generation is simple:
each term is generated by forming the product of a term from the left child and a
term from the right child. There are, however, several issues to consider: (1) Control:
computations can be performed in either a data-driven or goal-driven fashion; (2)
Term selection: the decision of which term to compute next; (3) Term combination:
the detection of terms which can be combined. We discuss each of these issues in
turn, then demonstrate computation of a term using our example poly-tree.

3 1n fact, the situation is slightly more complex when the use of local expressions is considered,
since then the set of variables needed below a node in the poly-tree varies depending on the values
of the variables instantiated so far. For this reason we actually interleave poly-tree construction and
search.
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Control Most probabilistic inference systems are data driven. SPI, the system
from which the TCS is derived, however, is query driven. We retain this query driven
computational style in our TCS, although it could undoubtably be adapted for data-
driven computation. Computation therefore starts at one of the roots of the poly-tree
when the problem solver asks for refinement of the distribution for that node, and
the root queries its immediate children for terms as needed.

Term selection We earlier stated that we would attempt to minimize the num-
ber of terms computed by computing largest terms first. We use AO* to search for
the largest term. AO* requires two measures, a measure of "distance so far" and a
heuristic estimate of remaining distance. We use the mass computed so far as the
inverted "distance traveled so far," and the partial value returned by a partial sih-
term as our heuristic estimate. This is an admissible heuristic, and so guarantees that
the largest term will be in front of the agenda upon termination4 . Problem solver
guidance can be provided in the form of a "scaling function" which has access to term
bindings and can scale the probability masses before they are used to order the search
agenda.

Term combination (marginalization) The number of terms computed in re-
sponse to any query is exponential in the number of relevant variables. However, the
major advance offered by recent developments in probabilistic inference is reduction
of the exponent for computation of complete distributions from number of relevant
variables to number of relevant variables in a single factor or duster, as we discussed
earlier. We should not have to pay a higher price simply to achieve incrementality.
We can achieve this efficiency by merging completed terms which are distinguished
only by bindings on variables not needed at higher levels of the evaluation poly-
tree. This creates two problems. First, a term which has already been incorporated
into streams at higher levels in the evaluation poly-tree can suddenly have its value
change (positively). Simple dependency tracking mechanisms suffice to record the in-
formation needed to update these higher terms. Second, exactly what does the AO*
guarantee now mean? In poly-tree nodes where marginalization takes place, a partial
term can be extended in two ways: by multiplying its value by terms from remaining
distributions, or by adding additional ground terms5 . While we use a heuristic which
is admissable in its estimate of the effect of the former, our heuristic is inadmissable
with regard to the latter (because it ignores marginalization). This means we can
only make a relatively weak statement about terms in streams generated from poly-

4This selection criterion is similar to the techniques used by deKleer [161 and Henrion [22). Both
use search on restricted classes of networks for the diagnostic task of finding most likely composite
hypotheses, with good results. One contribution of our work is to show how this technique can be
used in a more general setting.

*A agrounde term is one with a unique binding for each variable in the subtree rooted by the
poly-tree node under consideration.
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trees containing marginalization: that the first term returned will be that term whose
lower bound is highest after considering all complete ground subterms computed so
far. Note that the term need not be "complete" in the sense that further ground
terms may be added into it during later computation. It is, however, complete in the
sense that it is a sum of a set of complete ground terms.

Complexity The key assumptions we make are that: (1) the probability distribu-
tions are sufficiently asymmetric and; (2) the graphical structure of the belief net is
sufficiently sparse. Under these assumptions, the evaluation poly-tree will be such
that the total number of terms computed in all streams, in the course of computing
the first n term requests for each query in the query set, will be n times the number
of nodes in the poly-tree. Since the poly-tree is a binary tree, this in turn is 2n in the
number of variables relevant to the query set. All the operations we have described
are either constant time, linear, or at worst nlog(n) (reordering the agendas) in the
number of terms in an agenda. Therefore, the total complexity, in the admittedly
most optimistic case, is 2n2 log(n) where n is the number of variables relevant to a
query set and the number of terms requested. Our experience in actually applying
this procedure to three tasks, computation of marginal probabilities, most likely com-
posite hypotheses, and complete decision analysis, confirms that this estimate is ill
fact realistic for a typical class of belief nets describing decision models for diagnosis
and control of simple digital circuits.

Making Term Computation Incremental

The basic process sketched above is incremental with respect to computation of ad-
ditional terms for a static query set. We have made this process incremental with
respect to queries, evidence, and limited model reformulations (namely the extension
and pruning operations needed to support the OLMA task). We omit discussion of
these issues here due to lack of space. For a more complete discussion see[12].

Discussion

We have sketched a process which is essentially than heuristic search for the set of
bindings across a set of variables that maximizes the posterior probability across
those variables. In another context, deKleer has referred to this as the "Most Likely
Composite Hypothesis" problem [15], Henrion has described an algorithm for diag-
nosis in very large knowledge bases [22], and Pearl has discussed the problem of
"Distributed Revision of Composite Beliefs" [30]. From another perspective, Horvitz
et al have been developing bounded conditioning as an approach to anytime prob-
abilistic inference [24], and Boddy has proposed an anytime approach to dynamic
programming [3]. We believe the contributions of our work are several: (1) We have
shown how, with caching and marginalization, an incremental probabilistic inference
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system based on computation of individual terms can be made as efficient at com-
puting all terms (within a factor of logn) as the best algorithms for exact inference;
(2) We have demonstrated that this process can be made incremental with respect to
queries, evidence, and model revisions; (3) We have argued that such a system can
serve as the basis for a tractable general-purpose low-level representation service. In
particular, this general formulation can be used for evaluation of decision bases, as
will be discussed in the next section.

3.4 Term Computation and Real-time Diagnosis

There is still a missing link in our base-level OLMA story. What does term compiata-
tion have to do with evaluating a decision basis, and what does that have to do with
diagnosis? Our hypothesis is that the theorem we presented for general asymint/riC
belief nets holds for typical decision bases. Further, we make a stronger hypothesis:
that the computation of the few largest terms in the expected utility will be sufficient
to distinguish the highest expected utility action. An expected utility is the sum of a
number of terms, each of which is a probability of the system resting in a certain out-
come state (given the local expression language, perhaps a partial state) multiplied
by the (partial)6 utility of that (partial) state. Our hypothesis will be valid, then,
when most terms will be for either low probability outcomes or low utility aspects
of an outcome. In our system, then, diagnostic reasoning is driven by the search for
high payoff (either positive or negative) utility terms, which drives a search for high
probability outcomes, which in turn drives a search for high probability current state
information (note that, due to the factoring which takes place in the evaluation poly-
tree construction and the structure made explicit in the local expression language, it
is not obvious to state a priori what current state information will be queried during
expected utility term computation.).

There is one difficulty we encountered: while we have prior probabilities to gnid,
the instantiation of component states, we have none for action alternatives. There
are seven action alternatives for the 4 gate problem (four replacement actions, two
probe actions, and "waiting"), and two decision stages. We have introduced a simple
heuristic to aid search: we first compute the first few most likely composite hypotheses
across component states, and rate more highly those actions that replace or test
components which are faulty in one or more hypotheses.

Does all this work? We have only executed the system on small digital circuits to
date, due to high overhead in our prototype implementation. However, we have ob-
served linear term computation times over a range of 1 to 16 gates. By contrast, exact
evaluation of the decision basis exhausts available space (90mb swap on a Sparcsta-
tion 1+) at 8 gates. FIgure 3.4 is a typical performance graph. The task is monitoring
a simple 4 gate "half-adder." The vertical axis is cost-per-failure (total scenario cost

'As a result of the additive value model.
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divided by number of failures), and the horizontal axis is the number of cpu seconds
corresponding to one "tick" of the simulation clock (thus, higher numbers simulate
a faster cpu for the agent). The solid dots record the cost of running an exhaus-
tive decision algorithm, the crosses record the cost using the TCS. These preliminary
results indicate the TCS approach is considerably more robust with respect to task
timeliness requirements than is exact computation.

60--

40--

30-

20-- X

10 I

Cost 4 16 64 256

Quantum

Figure 3.4: Performance of TCS vs Complete eval
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Chapter 4

Reaction and deliberation in
real-time diagnosis

Each TCS point in the above graph is obtained by first performing a series of runs
to determine the optimal number of terms to compute for a given cpu speed, then
measuring the cost using that number of terms. Thus, the number of terms computed
is higher for quantum 256 than for quantum 4. This presumes that the number of
terms computed on each decision cycle is constant and independent of both internal
and external state. It further presumes the agent will ignore any sense data that
arrives while a decision computation is in progress. This is a very naive approach to
real-time problem solving. More generally, we can imagine a meta-decision process
which is invoked whenever either: (1) new sense data arrives; or (2) the state of
decision evaluation changes (eg, completion of the computation for an additional
term). Whenever a state change occurs in either, this meta-decision process has the
following options: take an action directly, initiate, terminate, or abort a decision
evaluation, or push a new decision evaluation on the stack of current evaluations.
Information available for this decision includes the current sense data and the current
state of the computation (number of terms computed so far, most likely composite
hypothesis, etc). In this chapter we explore further a formalization of the role of base
and meta-level decision processes in embedded systems, and we derive a model of the
role of reaction in real-time decision making from a consideration of the computational
dilemma facing finite agents acting in the world. This dilemma is simply that more
time spent in computation will generally provide a better solution, but more time
also means more delay, which may have costs of its own. Our model provides a more
fundamental role for reaction than is generally assumed. We illustrate this model with
examples from our prototype OLMA, and briefly survey several current proposals for
real-time problem solving architectures in light of the role they assume for reaction.
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4.1 Overview

The problem of real-time decision making, or acting in time, presents a fundamental
challenge to AI approaches to problem solving in general, and to decision making in
particular [2], [231 . Two predominant responses to this challenge are reaction 141,
[351 and meta-level reasoning [36]. We find most discussion of the roles of reaction
and meta-level reasoning in real-time problem solving confusing and confused. The
primary goal of this chapter is to present our understanding of the roles of and
interactions among potential decision-making elements, and especially the role that
reaction plays in decision making and in problem solving in general.

Our interest is in how finite agents cope with a complex and dynamic environment
in the pursuit of their goals. The fundamental requirement of an autonomous agent
is that it be able to act in pursuit of its goals. Therefore, we take the ability to
choose an act, or decide, as primitive. We will organize our discussion of decision
making around three characteristics of any decision situation: the process by which
the decision will be made, and the domain of action for the decision, and the way in
which a decision situations arises and is recognized.

4.2 Decision-making processes

Traditional theories of decision making or planning in Al model the process as the
application of a general-purpose reasoning procedure to a problem representation
stated in some language. These models generally presume the knowledge is organized
in a form convenient and compact for expression, and the reasoning complexity is
unbounded if the language is at least as expressive as FOPC. Such decision processes
are typically termed reflective or deliberative. By the use of the term reflective we
do not mean to necessarily imply any form of self reasoning, as in [41]. Rather, we
simply use the term in its dictionary sense of "to think deeply." By contrast, the term
reaction is typically used to denote a decision-making process in which the decision
is made based on simple, direct sensor-effector connections, and in which either the
depth of computation or the total computation time is bounded.

We find this characterization of reaction and reflection unsatisfactory. By the
above definitions, processes of the complexity of finding the optimal decision given
a decision basis, which are known to be NP, are "reactive:" it is straightforward to
represent the computation which must be performed as an expression tree over the
parameters involved, and the depth of the expression tree is linear in the numher
of parameters. Therefore, by the above definition, this is a "reactive' process. Yet.,
all of the uncertainty in a decision basis can be compiled out to yield a dccis.win
policy, a statement of action contingent only on hard situation observables. The fact
that both forms of decision making would be classified as "reactive" by at least one
common definition seems counterproductive to us. In the following we build up a
model of real-time decision making processes from which we derive a very different

20



characterization of reaction and reflection.

4.2.1 Models of decision processes

There is an essential element missing in the above definitions: they do not take into
account either the nature of the environment, the task, or the agent [13]. Given a
probability distribution over domain decision situations an agent might face, and a
set of utilities over outcomes, we begin by defining a decision process:

Definition 4 A decision process is any computational process which recognizes a sub-
set of situations and selects an action for each element in the subset.

Definition 5 An Optimal real-time decision process is a bounded-space bou.dt d-1illif
decision process which has the maximum expected utility over the subset of decision
situtations to which it responds, where the expected utility is evaluated at the time
the computation will complete when executed on the agent for which the process is
designed.

Optimal real-time decision processes for a given environment, task set, agent com-
bination can vary in two ways: The class of situations to which they respond, and the
computation time required (two decision processes which respond to the same set of
situations can have indentical expected utilities even if they take differing amounts of
time). Finally, we define an optimal real-time decision-process set as a set of decision
processes that together do not exceed the resource limits of the target, agent, and
which as a set provide the maximum expected utility of any such set. Notice that we
have not yet attempted to define reaction or reflection. The next step on the path is
to consider the domain of a decision situation.

4.2.2 Decision domains

In general, decision-making can take as its domain the environment, the agent, or
both. When the domain is the environment, input is the state of the environment, as
evidenced by sensors, and output is an action, to be performed by effectors. When
the domain is the agent (that is, meta-level decision making), input is (some aspect
of) an ongoing decision process, and/or output is a modification to such a process.
While it is not obvious a-priori, we conjecture that an optimal real-time decision
process set for highly resource constrained agents and/or agents operating in highly
dynamic environments will often include meta-level decision processes (for example,
meta-level reasoning would permit a highly resource constrained agent to have only
a subset of its optimal real-time decision process set active at any one time, reducing
overall resource requirements for a given set of base-level decision processes).

Meta-level decision making requires modeling ongoing decision processes. Any
computational process can be modeled as consisting of three aspects, data state,
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control state, and procedure. At this level of abstraction we can say little more. Data
state is simply the declarative input/output interface to a process, and its form is
determined by the language the decision-making process requires. Similarly, control
state cannot be specified separately from procedure. We chose to commit to decision
theory [37] as our theoretical model of decision making, and the decision basis 125] as
our representation of a decision problem. This defines a data state as consisting of
five sets:

"* Parameters representing aspects of the state of the domain,

"* Beliefs about the values of these parameters and their interrelationships,

"* Action alternatives,

"* Beliefs about the effects of actions on parameters, and

"* Preferences over possible outcomes.

A complete specification of control state would be impractical and extremelY iiii-
plementation specific. However, our inference method suggests a natural ahstractiMI:
the number of terms computed. Similarly, our method has a single procedural choi"e-
point: whether to use AO* or best-first search (this could be considered control state.
but we choose to represent it as an alternative procedure for pedagogy).

4.3 Decision Situations

We are almost ready to define a reactive decision process. One question remains:
how does a decision situation arise? We assume a symbolic, event-based interface
to the external world, which makes the first question simple for base-level decision
situations: a new decision situation arises whenever new symbolic data arrives from
the world. At the meta level the same principle applies: a new decision situation
arises whenever the state of the active decision process or the external world changes.
Of course, simply because a decision situation arises does not mean that there must
be a decision process which responds to it.

Now we face a second problem: how is an agent to recognize that a new decision
situation has arisen? All decision processes could be active simultaneously, monitor-
ing for situations to which they can respond. However, this approach is il gelueral
infeasible: for arbitrary forms of meta-level reasoning the number of potential decision
processes could be unbounded. An alterruative is to seek the other extreme: to Iind
a minimal set of decision processes which must be active at all times. This minimal
decision process set must be sufficient to generate all possible decision processes in
the full set under appropriate circumstances, and will in general contain three kinds
of decision process:
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1. decision processes that yield an action directly.

2. meta-level decision processes that initiate new decision processes.

3. meta-level decision processes that modify existing decision processes.

While not required by our model, the easiest way to ensure that this set is closed
and finite is to require that all decision processes in our minimal set be stateless (and
therefore not the objects of meta-level decision processes). This permits them all to
be executed by a computational element which need not monitor its own state. W,.
are finally in a position to define a reaction:

Definition 6 A reaction is a stateless, always active decision process, and the set of
such processes necessary to initiate all decision processes in a larger decision process
set is the minimal reaction set for the larger decision process set.

It may be that there exist stateless decision processes not in this set which, if
added to the set, would improve the expected performance of the agent (by reducing
response time to the decision situation responded to by those processes). The minimal
reaction set, supplemented by the subset of such stateless decision processes which
maximizes expected performance of the agent, is termed the optimal real-time reaction
set. For convenience, we term all decision processes not in the reaction set reflective.

4.3.1 Real-Time Decision Making

We can now present a general computational model of real-time decision making.
First, we posit a decision maker consisting of at least two computational elements,
a reactive processor and a reflective processor. The reaction set will be located in
the reactive processor. Since all decision processes in the reaction set are stateless,
the reactive processor can be implemented as a combinational circuit. Input to the
reactive processor must include all state change information, both external to the
agent and internal. The output of the reactive processor can be any one of the
following:

1. An action to be performed in the external world. In this case the reactive
element is responding to an external decision situation by choosing to make the
decision reactively, and producing the decision.

2. A change to an ongoing reflection. In this case the reactive element is responding
to a meta-level decision situation by choosing to make the decision reactively,
and again producing the decision.

3. A new reflection to be begun. In this case the reactive element is responding
to a base or meta-level decision situation by choosing to make the decision
reflectively, and initiating the reflection.
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Figure 4.1: Reaction and Reflection

Of course, the reactive element Can always chose to ignore a decisionl stllnatio10,

entirely. Note that in this model all reflection is initiated by reaction. When initiating
a reflection, the reactive element must provide initial values for the data state, control
state, and procedure. If the data state scope includes only the external environment,

base level agent action, and a problem statement, then the reflection spawned is base-
level. However, if the scope includes one or more elements of other on-going reflections
(data, control, or procedure), then by definition the new reflection is meta-level. We
assume that only the highest level reflection currently outstanding is active, and that
all lower level reflections axe suspended until it completes or is terminated by the
reactive element. A diagram of the necessary communication and control relations
among the reactive and reflective elements is shown in figure 4.1. Variables in reactive
decision processes are bound to the currently active decision process in the reflective

element.
We have introduced a variety of definitions, and claimed to provide a general model

of real-time decision making in terms of those definitions. Clearly these definitions are
useful only to the extent that we can do something with them. Ideally, we would like
to provide a procedure for solving the design problem implicit in the model: given all
ETA description, derive the optimal real-time decision process set and corresponding
optimal real-time reaction set. We have not yet produced such a result, and doubt it is
achievable in the near future (if ever) for non-trivial problems. Rather, we present two
illustrations of the utility of this framework. First we illustrate this model with some
examples from an agent we are constructing. Second, we survey, from the perspective
of our model, several current proposals for real-time problem solving architectures.
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4.4 Reaction and Deliberation in the OLMA

As a consequence of our model of the roles of reaction and reflection, we can fully
specify an agent by specifying its reaction set. However, reactions that initiate re-
flections must specify the input over which the reflection is to operate, the initial
control state, and the procedure to be used. Initial data state includes prior beliefs
about equipment state, current sense data, and, as it is computed during the course
of inference, the most likely current hypothesis on equipment state. Control state Is
the number of terms computed and will always be initialized to zero. Finall, we will
consider the best-first search form of term computation as our only procedural choice.

Sample Reactions for the OLMA We present below a few sample reactions from
an OLMA we are constructing to maintain simple digital circuit: a half-adder. First
we present the minimal reaction set needed to collect the data presented earlier on
performance of term computation.

Reaction 1: Start a deliberation

Event: New sense data from the world.
State: No reflection currently in progress.

Action: Initiate deliberation on base-level ID.

Reaction 2: Terminate reflection.
Event: New term computed, #terms > limit.

State: Base level reflection currently in progress.
Action: Terminate base-level decision process and take recommeded

action.
Next we look at a slightly more sophisticated reaction. As the sensing frequency

increases, it becomes worthwhile to monitor data state during deliberation. If the
most likely composite hypothesis is that the equipment is OK, then in pays to abandon
the current inference, and prepare to process the next available sense data:

Reaction 3: Reactively terminate base level inference if MLCH is OK.
Event Reflective state change: new possible world state identified.
State: MLCH = OK

Action: Abort base-level decision process.

4.5 Discussion

It may seem that the distinction between the base-level decision algorithm and the re-
active/reflective meta-level procedures is arbitrary: couldn't all this be collapsed into
one base-level procedure (eg, include in the base level decision procedure a heuristic
which evaluates whether or not to stop on each iteration)? In this particular case
we could in fact collapse the set of meta-level processes into the base level process,
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except for the processes that monitor for new world state. Since world state changes
concurrently with agent state, tracking world state while executing a decision process
requires concurrent decision processes.

We have developed a model of the role of reaction in real-time decision making, but
it is lacking in several important respects. First, we have provided no guidance on how
to find an optimal reaction set, given an ETA specification, or even how to evaluate
any given reaction set. We have explored the problem of building optimal reaction
sets, with basically negative results so far. Base-level reactions seem simple on first
examination. However, there are several problems: first, the optimal agent is NOT
stateless, and any attempt to build a stateless reaction set is doomed to failure. State,
however, introduces its own complexities: how much, how is it to be maintained, and
how large will the reaction set grow? A clean theoretical formulation of state is
simply the sense/act history of the agent. This, however, is clearly impractical, as
it grows linearly with time. An alternate formulation, which we are in the process
of exploring, builds reactions for those situation/action pairs which cati be detected
with finite state.

Definition 7 R,(Sn, A) is a relation from sense sequences of length n (inclhding a,'l.c
up to n - 1) to actions. rn(s,, a) is one member of the relation.

This relation will not, in general, cover all of Sn, but only those elements for
which the action is appropriate regardless of prior state. We can detect members of
Ro through R& on-line as follows:

1. Keep the full decision model for n past stages.

2. When a decision is made, test its sensitivity to the believed equipment state for
time t - 1, t - 2, etc, where t is the current time.

3. If the decision is insensitive to equipment state at time t - i, then the sense/act
history for t - i through t is a member of R,+1 .

The key step is the determination of independence from prior state. We are devel-
oping symbolic methods for establishing this independence, given the sense history.

Meta-level reactions pose an even more serious problem, for the following reasons:

1. Current theories for controlling base level inference [23], [361 do not consider
repetitive decision making of the kind the OLMA faces, and so are inapplicable.

2. A model of the meta-level decision problem which has the markov property is
intractably large, and so reinforcement learning schemes are inapplicable.

We regard this as a major open problem in real-time problem solving, and expect it
to be a focus of future research.
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Another limiation of the work described here is that we have only illustrated
this mechanism with bounded-time decision processes over a decision basis, a simple
propositional language. We do not believe such a simple language provides an ade-
quate account for the background knowledge an agent can bring to bear on a decision
situation. All these are topics for future research. Another issue is how reactions
evolve. Conceptually this is not a problem: we did not say that reactions could ,0ot
be reflected over, but only that they were not visible to the reactive element and
therefore could not be modified during the course of a single execution.

Nonetheless, we believe the contribution made by our model as developed to date
is significant. A wide variety of "architectures" for autonomous agents have been
proposed, and there has been no way in general of comparing these architectures on
any dimension. Using the model of reaction presented in this paper, we can identify
clear differences in the role of reactive processes among various architectures. Note
we do not claim that an implementation that provides all modes of interaction is
necessarily better than one which does not: that is an ETA specific question we do
not claim to have the answer to. Nonetheless, we examine a few proposed architectures
in the paragraphs that follow.

One standard role for "reaction" is as a front end to a standard AI problem solver
[6]. Architectures of this type typically allow the "higher," "deliberative" levels to
control the reactive level. An important capability of our reactive model is missing in
this approach: the ability for the system to monitor the changing state of the world,
and coordinate the state of reflective problem solving to that of the environment.
Also, such systems must provide a separate mechanism for controlling meta-lhvel
reasoning, if they provide any account of it at all.

A second significant problem solving model is that of SOAR [261. Th'e' SOAR
model seems very close to ours, with one exception: decision situations in SOAH
arise, not on any state change, but only on one specific kind: problem-solver blockage.
Thus, SOAR loses the capability for opportunistic meta-level control, either reactively
or reflectively. SOAR can simulate this capability by blocking on every state change,
but this would impose a meta-level cycle between each base-level step, an exorbitant
overhead.

BB* [18] is a blackboard system which interposes a single level of meta-level rea-
soning between each base-level cycle. In recent work a front-end data processor has
been added to handle data reduction tasks. Primary control resides in the reflective
processor, the blackboard. This makes flexible multi-level meta-level reasoning impos-
sible: in order to prevent infinite regress, ultimate control must reside in reaction. In
BB* we can consider both the front end data processor and the meta-level reasoning
as parts of the reactive system. Viewed this way, the reactive system has reasonable
control capability: through introduction of data and control of the agenda reaction
can control both the data and control state of reflection. However, the blackboard im-
plemented meta-level is not necessarily a bounded time computation, arbitrary depth
of meta-level computation is impossible, and the inherent overhead is high enough
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that we r--spect the optimal reaction set will be small, limiting the performance of
the optimal real-time decision process set.

Finally, we consider the IRMA model of [34]. In this model an agent has a set of
intentions (partial plans) which is constantly being merged with new opportunities
identified by monitoring the world. Viewed from our perspective on reaction and
reflection, IRMA has a reflective planner (the visible state is the intention set), with
a reactive element that modifies only the control state of the planner, and which never
initiates meta-level reflections.

4.6 Summary

Reaction is typically assigned the role of serving as a "quick and dirty" front end to
a more "intelligent" deliberative (reflective) process. We have argued that reactioln
plays a much more fundamental role in real-time decision making: that it is the
ultimate ground of all reflective processing, and that the essence of a reaction is that
it is a stateless decision process which is always active. We have introduced the'
notion of an optimal real-time reaction set as a complete specification of the optimal
solution to a real-time decision problem, where the problem specifications include
environment, task, and agent characteristics. Finally, we have found that our model
of reaction is adequate to compactly describe the kinds of decision making dynamics
we have found useful in a study domain, the on-line maintenance agent.
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Chapter 5

Summary

Monitoring, assessment, and diagnosis are often thought of as isolated tasks in theoret-
ical reasoning. We have presented a decision-theoretic interpretation of these as tasks
in practical reasoning and sketched components of our approach to this task. These
include an embedded agency, decision-theoretic formulation of the task, a tractable
incremental decision procedure, and a real-time architecture that provides, a new,
fundamental role for "reaction" in computational architectures. The approach makes
significant strides to integrating commonly held logical and probabilistic models of
diagnosis, as well as incorporating real-time embedded agency concerns.

We are aware of several limitations in our current approach. Our model of time
is quite naive and limited. We have no tractable methods for discovering optimal
policies for control of inference. Our current inability to handle continuous variables
is a serious restriction. But perhaps the most severe limitation is the asstuimptlioti of
a complete base-level decision model applicable to all situations. We have conctlIrrCet
work which has made considerable progress on the problem of continuous variables,
and are exploring methods by which situated decision models can be dynamically
constructed from background domain theories. This latter work uses a meta-level
version of the same base level architecture sketched here, and uses both bottom up
and top-down construction methods. This, we believe, is the most exciting direction
in which our research is focused.

29



Chapter 6

Grant Administration Data

6.1 Publication

An article describing our approach to real-time is being submitted to is in prepara-
tion, for submission to either Al Journal or the new journal on Real-time Computing.
Papers also appearred at DX-92 and SOAR-92, and are under preparation for suib-
mission to UAI-93 and CAIA-94.

6.2 Professionals involved

"* Bruce D'Ambrosio, Associate Professor, OSU.

"* Thomas Dietterich, Associate Professor, OSU.

"* Lothar Kaul, MS, OSU, Spring, 1991.

"* Caryl Westerberg, MS expected Spring, 1993.

6.3 Interactions

1. Presentation, IRTPS kickoff at WPAFL, Spring, 1991.

2. Presentation, Uncertainty workshop at Canadian A I conf, Vancouver, CA, Spritig.

1992.

3. Presentation, AAAI-92 workshop on tractable reasoning.

4. Presentation, SOAR-92 (Space Operations and Research-92).

5. Presentation, Principles of Diagnosis 92.

30



6. Invited, Approxmate Computation workshop, Real-time systems conference,
winter, 1992

7. Invited Participant, NSF Workshop on Real-time and Al, Spring, 1993.
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